ar X iv : 0 70 8 . 13 21 v 2 [ m at h . ST ] 2 5 M ar 2 00 8 GRAPHICAL METHODS FOR EFFICIENT LIKELIHOOD INFERENCE IN GAUSSIAN COVARIANCE MODELS

نویسنده

  • THOMAS S. RICHARDSON
چکیده

In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 3 . 25 15 v 1 [ m at h . ST ] 1 3 M ar 2 00 9 Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling

We show that the two-stage adaptive Lasso procedure (Zou, 2006) is consistent for high-dimensional model selection in linear and Gaussian graphical models. Our conditions for consistency cover more general situations than those accomplished in previous work: we prove that restricted eigenvalue conditions (Bickel et al., 2008) are also sufficient for sparse structure estimation.

متن کامل

ar X iv : 0 81 0 . 27 53 v 1 [ m at h . ST ] 1 5 O ct 2 00 8 Concentration of the spectral measure of large Wishart matrices with dependent entries

We derive concentration inequalities for the spectral measure of large random matrices, allowing for certain forms of dependence. Our main focus is on empirical covariance (Wishart) matrices, but general symmetric random matrices are also considered.

متن کامل

ar X iv : 0 70 9 . 39 62 v 2 [ m at h . R T ] 2 6 M ar 2 00 8 COMBINATORIAL GELFAND MODELS

A combinatorial construction of a Gelfand model for the symmetric group and its Iwahori-Hecke algebra is presented.

متن کامل

ar X iv : 0 70 8 . 37 30 v 1 [ m at h . PR ] 2 8 A ug 2 00 7 DENSITIES FOR ROUGH DIFFERENTIAL EQUATIONS UNDER HÖRMANDER ’ S CONDITION

We consider stochastic differential equations dY = V (Y ) dX driven by a multidimensional Gaussian process X in the rough path sense. Using Malliavin Calculus we show that Yt admits a density for t ∈ (0, T ] provided (i) the vector fields V = (V1, ..., Vd) satisfy Hörmander’s condition and (ii) the Gaussian driving signal X satisfies certain conditions. Examples of driving signals include fract...

متن کامل

ar X iv : 0 80 1 . 13 57 v 1 [ m at h . ST ] 9 J an 2 00 8 On maxima of periodograms of stationary processes ∗

We consider the limit distribution of maxima of periodograms for stationary processes. Our method is based on m-dependent approximation for stationary processes and a moderate deviation result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008